7.2: Transformations of Initial Value Problems

Theorem 1. (Transforms of Derivatives)

Suppose that the function f(¢) is continuous and piecewise smooth for ¢ > 0
and is of exponential order as { — co. Then £{/'(t)} exists (for s > ¢) and

LU0} = sL{T (D} — J(0) = sF(s) — [(0).

Exercise 1. Find a similar formula for £{f”(¢)} and then try to generalize
to a formula for £{f(1)}.
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Example 1. Solve the initial value problem (using Laplace transforms)

' —a'—6r=0; x(0)=2, z'(0)=-
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Example 2. Suppose we wish to study the motion of a mass-and-spring
system with external force which gives a differential equation

" +dr =sindt;  r{0) =2'(0) =0.

Solve this equation using Laplace transforms.
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Example 3. In Chapter 4, we will consider systems of differential equations.
Here is a glimpse at the power of Laplace transforms. Solve the system

- l;' 5‘"2{-"; S92 3
(‘) 27" = —6x + 2y
(n'{ ) y" = 2x — 2y + 40sin 3t

witlt initial conditions r(0) = 2/(0) = y(0) = ¥'(0) = 0. This is an example of
a mass-and-spring system as below.
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Example 4. Find L{te*}.
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Exercise 2. Find £{Isinkt} using the same method as Example 4.
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Theorem 2. (Transforms of Integrals)

If f(t) is a piecewise continuous function for £ > 0 and is of exponential
order, then

F(s)
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for s > c. Equivalently,
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Example 5. Find £~ {-;—}
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Homework. 1-5, 11-23 (odd) 27-33 (all)



